Powers: Powers Theory
Powers Theory
Powers Rules
The following rules hold, assuming that # \displaystyle a > 0 # and # \displaystyle b > 0 #:# \displaystyle \begin{aligned} a^p \cdot a^q &= a^{p+q}, & \frac{1}{a^n} &= a^{-n}, & \frac{a^p}{a^q} &= a^{p-q}, & (a^p)^q &= a^{pq}, \\ (ab)^p &= a^p b^p, & \sqrt[n]{a} &= a^{\frac{1}{n}}, & \sqrt[q]{a^p} &= a^{\frac{p}{q}}, & \sqrt{ab} &= \sqrt{a}\sqrt{b}. \end{aligned} #
The following rules hold, assuming that # \displaystyle a > 0 # and # \displaystyle b > 0 #:# \displaystyle \begin{aligned} a^p \cdot a^q &= a^{p+q}, & \frac{1}{a^n} &= a^{-n}, & \frac{a^p}{a^q} &= a^{p-q}, & (a^p)^q &= a^{pq}, \\ (ab)^p &= a^p b^p, & \sqrt[n]{a} &= a^{\frac{1}{n}}, & \sqrt[q]{a^p} &= a^{\frac{p}{q}}, & \sqrt{ab} &= \sqrt{a}\sqrt{b}. \end{aligned} #
For example, using these rules we have:
# \displaystyle \frac{(3a^2b)^{\frac{1}{3}}}{2a^4b^{-\frac{1}{2}}} = \frac{3^{\frac{1}{3}}a^{\frac{2}{3}}b^{\frac{1}{3}}}{2a^4b^{-\frac{1}{2}}} = 3^{\frac{1}{3}} \cdot 2^{-1} a^{-\frac{10}{3}} b^{\frac{5}{6}}. #
The expression is reduced to a product of numbers and powers of the form
# \displaystyle C \cdot a^p b^q c^r \dots #
If # \displaystyle x \in \mathbb{R} # then
# \displaystyle \sqrt{x^2} = |x| \quad \text{and} \quad \sqrt[3]{x^3} = x, #
where # \displaystyle |x| # denotes the absolute value of # \displaystyle x #.
Absolute value
# \displaystyle |x| = \begin{cases} x & \text{if } x \geqslant 0, \\ -x & \text{if } x < 0. \end{cases} #
# \displaystyle |x| = \begin{cases} x & \text{if } x \geqslant 0, \\ -x & \text{if } x < 0. \end{cases} #
Note: # \displaystyle \sqrt{c^2} = |c| # but # \displaystyle x^2 = c^2 \Leftrightarrow x = c \lor x = -c. #
Powers (exponentials) and logarithms are inverses of each other. For instance:
# \displaystyle \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline x & \dots & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \dots & \log_2 y \\ \hline 2^x & \dots & \frac{1}{64} & \frac{1}{32} & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & 2 & 4 & 8 & 16 & 32 & 64 & \dots & y \\ \hline \end{array} #
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.